16 September 2008

KONSEP KONVERSI ENERGI

Apa itu energi?

Definisi tentang energi dapat menjadi sangat lebar. Di mata para insinyur, energi bisa bertautan dengan istilah minyak bumi, listrik, panas bumi, gas alam, dan sebagainya. Di mata masyarakat, energi bisa berarti bensin, diesel (solar), pertamax, minyak tanah, baterai, dan bahkan makanan. Tapi secara umum, energi itu ialah sesuatu yang menghasilkan kerja.

Konversi?

Apakah yang dimaksud dengan konversi? Konversi artinya perubahan bentuk. Jadi, kalau mau ditilik-tilik energi yang kita gunakan dalam kehidupan kita (katakanlah makanan atau listrik dari PLN), merupakan hasil konversi energi dari suatu bentuk sebelumnya. Berbagai peralatan proses dan teknologi bertugas mengkonversi energi tersebut menjadi sebuah bentuk energi siap-guna dan mudah-pakai (dalam konteks artikel ini, konsumen akhirnya ialah manusia). Contoh bentuk energi siap-guna dan mudah-pakai ialah energi listrik, makanan, BBM, LPG, minyak tanah, dan beberapa contoh lainnya. Contoh bentuk energi tidak siap-guna dan tidak mudah-pakai ialah minyak bumi mentah, gas alam, sinar matahari, air laut, batubara tambang, dan masih banyak lagi.

Macam-macam Energi

Energi panas bumi

Daerah berpanas bumi aktif, Selandia Baru.
Daerah berpanas bumi aktif, Selandia Baru.

Energi panas bumi adalah energi yang dihasilkan oleh tekanan panas bumi. Energi ini dapat digunakan untuk menghasilkan listrik, sebagai salah satu bentuk dari energi terbaharui, tetapi karena panas di suatu lokasi dapat habis, jadi secara teknis dia tidak diperbarui secara mutlak.

Hidroelektrisitas



Hidroelektrisitas adalah satu bentuk tenaga hidro digunakan untuk memproduksi listrik. Kebanyakan tenaga hidroelektrik berasal dari energi potensial dari air yang dibendung dan menggerakkan turbin air dan generator. Bentuk yang kurang umum adalah memanfaatkan energi kinetik seperti tenaga ombak. Hidroelektrisitas adalah sumber energi terbaharui.


Di banyak bagian Kanada (provinsi British Columbia, Manitoba, Ontario, Quebec, dan Newfoundland and Labrador) hidroelektrisitas digunakan secara luas. Pusat tenaga yang dijalani oleh provinsi-provinsi ini disebut BC Hydro, [[[Manitoba Hydro]], Hydro One (dulunya "Ontario Hydro"), Hydro-Québec, dan Newfoundland and Labrador Hydro. Hydro-Québec merupakan perusahaan penghasil listrik hydro terbesar dunia, dengan total listrik terpasang sebesar 31.512 MW (2005).

Tenaga listrik hydro, menggunakan kinetik, atau energi gerakan sungai, sekarang menyediakan 20% listrik dunia. Norwegia menghasilkan hampir seluruh listriknya dari hydro, sedangkan Iceland memproduksi 83% dari kebutuhannya (2004), Austria memproduksi 67% dari seluruh listrik yang dihasilkan di negara tersebut. Kanada merupakan penghasil tenaga hidro terbesar dunia dan memproduksi lebih dari 70% listriknya dari sumber hidroelektrik.

Mesin kalor

Mesin kalor adalah sebutan untuk alat yang berfungsi mengubah energi panas menjadi energi mekanik.

Dalam mesin mobil misalnya, energi panas hasil pembakaran bahan bakar diubah menjadi energi gerak mobil. Tetapi, dalam semua mesin kalor kita ketahui bahwa pengubahan energi panas ke energi mekanik selalu disertai pengeluaran gas buang, yang membawa sejumlah energi panas. Dengan demikian, hanya sebagian energi panas hasil pembakaran bahan bakar yang diubah ke energi mekanik. Contoh lain adalah dalam mesin pembangkit tenaga listrik; batu bara atau bahan bakar lain dibakar dan energi panas yang dihasilkan digunakan untuk mengubah wujud air ke uap. Uap ini diarahkan ke sudu-sudu sebuah turbin, membuat sudu-sudu ini berputar. Akhirnya energi mekanik putaran ini digunakan untuk menggerakkan generator listrik.

Sel bahan bakar

Sel bahan bakar (bahasa Inggris: fuel cell) adalah sebuah alat elektrokimia yang mirip dengan baterai, tetapi berbeda karena dia dirancang untuk dapat diisi terus reaktannya yang terkonsumsi; yaiut dia memproduksi listrik dari penyediaan bahan bakar hidrogen dan oksigen dari luar. Hal ini berbeda dengan energi internal dari baterai. Sebagai tambahan, elektroda dalam baterai beraksi dan berganti pada saat baterai diisi atau dibuang energinya, sedangkan elektroda sel bahan bakar adalah katalitik dan relatif stabil.

Reaktan yang biasanya digunakan dalam sebuah sel bahan bakar adalah hidrogen di sisi anode dan oksigen di sisi kathoda (sebuah sel hidrogen). Biasanya, aliran reaktan mengalir masuk dan produk dari reaktan mengalir keluar. Sehingga operasi jangka panjang dapat terus menerus dilakukan selam aliran tersebut dapat dijaga kelangsungannya.

Sel bahan bakar seringkali dianggap sangat menarik dalam aplikasi modern karena efisiensi tinggi dan penggunaan bebas-emisi, berlawanan dengan bahan bakar umum seperti methane atau gas alam yang menghasilkan karbon dioksida. Satu-satunya hasil produk dari bahan bakar yang beroperasi menggunakan hidrogen murni adalah uap air. Namun ada kekhawatiran dalam proses pembuatan hidrogen yang menggunakan banyak energi. Memproduksi hidrogen membutuhkan "carrier" hidrogen (Biasanya bahan bakar fosil, meskipun air dapat dijadikan alternatif), dan juga listrik, yang diproduksi oleh bahan bakar konvensional. Meskipun sumber energi alternatif seperti energi angin dan surya dapat juga digunakan, namun sekarang ini mereka sangat mahal.


Sel surya

Taksi tenaga surya sedang dipamerkan oleh pembuatnya pada KTT Perubahan Iklim di Nusa Dua Bali
Taksi tenaga surya sedang dipamerkan oleh pembuatnya pada KTT Perubahan Iklim di Nusa Dua Bali

Sel surya atau sel photovoltaic, adalah sebuah alat semikonduktor yang terdiri dari sebuah wilayah-besar dioda p-n junction, di mana, dalam hadirnya cahaya matahari mampu menciptakan energi listrik yang berguna. Pengubahan ini disebut efek photovoltaic. Bidang riset berhubungan dengan sel surya dikenal sebagai photovoltaics.

Sel surya memiliki banyak aplikasi. Mereka terutama cocok untuk digunakan bila tenaga listrik dari grid tidak tersedia, seperti di wilayah terpencil, satelit pengorbit [[bumi], kalkulator genggam, pompa air, dll. Sel surya (dalam bentuk modul atau panel surya) dapat dipasang di atap gedung di mana mereka berhubungan dengan inverter ke grid listrik dalam sebuah pengaturan net metering.

Tenaga angin


Ladang angin di Neuenkirchen, Dithmarschen (Jerman).Apa itu PLTA

PLTA (Pembangkit Listrik Tenaga Air) adalah suatu system pembangkit energi listrik dengan cara memanfaatkan aliran dari air yang kemudian diubah menjadi energi listrik malalui putaran turbin dan generator. Sistem yang sangat simple, dan yang penting adalah ramah terhadap lingkungan.

•Dam – Hampir semua PLTA mengandalkan bagian ini untuk membendung air dari sunagai hinggga terbentuk danau. Pada PLTA tertentu Dam dimanfaatkan untuk tempat rekreasi.
•Intake – Pintu air untuk masuknya aliran air menuju ke turbin melalu penstock.
•Penstock – Saluran pipa air yang menuju ke turbin. Didalam pipa ini tekanan oir naik.
•Turbine – Mesin yang memutar generator. Biasanya turbine yang dipakai adalah Francis Turbine. Sebuah turbin mempunyai berat sampe 172 tons dan kecepatan putaran 90 rpm.
Generators – Mesin penghasil listrik
•Transformer – Trafo untuk mengubah tegangan AC ke tegangan yang lebih tinggi.
•Power lines – Jaringan listrik 3 phase
•Outflow – Aliran air yang melewati impeller akan dialirakan lagi ke Dam.

DAM

Berlokasi di perbatasan Brazil-Paraguay dan tidak jauh dari perbatasan Argentina, permulaan proyek ini dimulai pada tahun 1966 ketika Menlu Brazil dan Paraguay menandatangani kesepakatan bersama “Kesepakatan Ygazu”. Yang kemudian ditindak lanjuti dengan penelitian kemampuan Hydraulic dari Sungai Parana.
Pada 26 April 1973, Brazil & Paraguay menandatangani perjanjian “Pengembangan sumber listrik tenaga air dari sungai Parana” yang kemudian terbentuk “ITAIPU Binancional” (Kerjasama secara hokum, administrasi dan kemampuan keuangan dan teknikal untuk merencanakan & mengoperasikan Pembangkit Listrik)
Pelaksanaan konstruksi dimulai pada tahun 1975, mencapai puncaknya pada tahun 1978 dengan pekerja sekitar 30000 orang dilokasi. Dengan produksi concrete (bahan untuk beton) sekitar 12,8Juta m³ (15 kali dari produksi concrete yang digunakan untuk Eurotunnel/terowongan yang menyambungkan antara Inggris dengan perancis). Ketinggian dari Dam adalah 196m, lebar 7,76 km. Danau yang terbentuk akibat bendungan tersebut mencapai panjang 170 km dengan volume air 29 milyar ton.
Unit 1 mulai beroperasi pada Desember 1983, Jaringan listrik di Paraguay selesai dibangun pada maret 1984, sedangkan Brazil 5 bulan setelah itu. Pada maret 1991 unit terakhir (Unit 18) mulai beoperasi.
Air yang diperlukan pada intake untuk 1 turbin (Francis Turbine) dengan keluaran daya 715 MW adalah 700m3/s. Dengan efisiensi 98.6%.
NOTE: efisiensi adalah perbandingan antara energi input dengan energi output. Semakin besar nilai efisiensi semakin bagus (jadi ga ada loss of energy). Coba bandingkan dengan PLTU (tenaga uap) atau PLTG (tenaga gas). PLTU efisiensinya sekitar 60% - 80% (artinya batubara yang dibakar untuk menghasilkan Uap yang digunakan untuk memutar turbin cuma 60% saja yang hasilnya jadi Listrik. sisanya terbuang menjadi panas), sedangkan untuk PLTG malah lebih rendah dari PLTU, efisiensi sekitar 50%-70%).
Setiap tahun ITAPU menghasilkan energi listrik sekitar 75 TWh dan mengurangi emisi CO2 kurang lebih 67.5 juta ton (dibandingkan dengan pembangkit listrik tenaga batubara). Total biaya proyek ini adalah US$ 20 juta

This image has been resized. Click this bar to view the full image. The original image is sized 604x462.







Foto bagian dasar tempat turbine berada
Pipa putih adalah inlet/jalan nya air masuk ke turbin




Generator ITAIPU

Electrical

Setiap tahun ITAPU menghasilkan 75 TWh. Listrik dari ITAPU dialirkan melalui jaringan 3-phase baik ke Brazil dan Paraguay dengan system jaringan yang berbeda. Karena ada 2 Frekuensi, 50 Hz dan 60 Hz, 2 sistem transmisi dibangun untuk mensupportnya.
Transformers
Untuk menaikkan tegangan /Voltase dari output generator maka dibangun trafo 2 macam:
- Trafo 1-Phase dengan 9 bank kapasitor 18 kV - 525 kV dengan rated 825 MVA untuk 50 Hz.
- Trafo 1-Phase dengan 9 bank kapasitor 18 kV - 525 kV dengan rated 768 MVA untuk 60 Hz.

Transmission System/Sistem Transmisi

Menimbang bahwa tahun pertama operasi ITAPU, Paraguay harus “mengalah” duluan dalam menikmati listriknya (sesuai dengan perjanjian sebelum pembangunan) maka diputuskan pembangunan Transmissi Station duluan di Brazil. Sistem yang dipakai (karena ada 2 pemakain frekuensi 50 Hz dan 60 Hz) untuk Brazil dibangun EHV-AC (Extra High Voltage - Alternating current) untuk 6300 MW pada 60 Hz dan untuk paraguay HV-DC (High Voltage - Direct current) untuk 6000 MW pada 50 Hz.
HV-DC-system memiliki tegangan ± 500 kV, yang kemudian akan dikonvert lagi ke tegangan AC di Ibuana (dekat Sao Paolo).EHV-AC-system memilik tegangan sebesar 750 kv.

Bagaimana PLTA bekerja

Posted by mohab in Pengairan.
trackback

PLTA merubah energi yang disebabkan gaya jatuh air untuk menghasilkan listrik. Turbin mengkonversi tenaga gerak jatuh air ke dalam daya mekanik. Kemudian generator mengkonversi daya mekanik tersebut dari turbin ke dalam tenaga elektrik.

Jenis PLTA bermacam-macam, mulai yang berbentuk “mikro-hidro” dengan kemampuan mensupalai untuk beberapa rumah saja sampai berbentuk raksasa seperti Bendungan Karangkates yang menyediakan listrik untuk berjuta-juta orang-orang. Photo dibawah ini menunjukkan PLTA di Sungai Wisconsin, merupakan jenis PLTA menengah yang mampu mensuplai listrik untuk 8.000 orang.

alex.jpg

Komponen PLTA

PLTA yang paling konvensional mempunyai empat komponen utama sebagai berikut :

  1. Bendungan, berfungsi menaikkan permukaan air sungai untuk menciptakan tinggi jatuh air. Selain menyimpan air, bendungan juga dibangun dengan tujuan untuk menyimpan energi.
  2. Turbine, gaya jatuh air yang mendorong baling-baling menyebabkan turbin berputar. Turbin air kebanyakan seperti kincir angin, dengan menggantikan fungsi dorong angin untuk memutar baling-baling digantikan air untuk memutar turbin. Selanjutnya turbin merubah energi kenetik yang disebabkan gaya jatuh air menjadi energi mekanik.
  3. Generator, dihubungkan dengan turbin melalui gigi-gigi putar sehingga ketika baling-baling turbin berputar maka generator juga ikut berputar. Generator selanjutnya merubah energi mekanik dari turbin menjadi energi elektrik. Generator di PLTA bekerja seperti halnya generator pembangkit listrik lainnya.
  4. Jalur Transmisi, berfungsi menyalurkan energi listrik dari PLTA menuju rumah-rumah dan pusat industri.

hydroplant-animate.gif

Berapa listrik yang bisa dihasilkan oleh PLTA ?

Besarnya listrik yang dihasilkan PLTA tergantung dua factor sebagai berikut :

  1. Berapa besar air yang jatuh. Semakin tinggi air jatuh, maka semakin besar tenaga yang dihasilkan. Biasanya, tinggi air jatuh tergantung tinggi dari suatu bendungan. Semakin tinggi suatu bendungan, semakin tinggi air jatuh maka semakin besar tanaga yang dihasilkan. Ilmuwan mengatakan bahwa tinggi jatuh air berbanding lurus dengan jarak jatuh. Dengan kata lain, air jatuh dengan jarak dua satuan maka akan menghasilkan dua satuan energi lebih banyak.
  2. Jumlah air yang jatuh. Semakin banyak air yang jatuh menyebabkan turbin akan menghasilkan tenaga yang lebih banyak. Jumlah air yang tersedia tergantung kepada jumlah air yang mengalir di sungai. Semakin besar sungai akan mempunyai aliran yang lebih besar dan dapat menghasilkan energi yang banyak. Tenaga juga berbanding lurus dengan aliran sungai. Dua kali sungai lebih besar dalam mengalirkan air akan menghasilkan dua kali lebih banyak energi.

Tenaga angin menunjuk kepada pengumpulan energi yang berguna dari angin. Pada 2005, kapasitas generator tenaga-angin adalah 58.982 MW, hasil tersebut kurang dari 1% penggunaan listrik dunia. Meskipun masih berupa sumber energi listrik minor di kebanyakan negara, penghasilan tenaga angin lebih dari empat kali lipat antara 1999 dan 2005.

Kebanyakan tenaga angin modern dihasilkan dalam bentuk listrik dengan mengubah rotasi dari pisau turbin menjadi arus listrik dengan menggunakan generator listrik. Pada kincir angin energi angin digunakan untuk memutar peralatan mekanik untuk melakukan kerja fisik, seperti menggiling "grain" atau memompa air.

Tenaga angin digunakan dalam ladang angin skala besar untuk penghasilan listrik nasional dan juga dalam turbin individu kecil untuk menyediakan listrik di lokasi yang terisolir.

Tenaga angin banyak jumlahnya, tidak habis-habis, tersebar luas, bersih, dan merendahkan efek rumah kaca.

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas